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Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a multi-
purpose RNA-binding protein (RBP) involved in normal and patho-
logical RNA metabolism. Transcriptome-wide mapping and in vitro
evolution identify consensus hnRNP A1 bindingmotifs; however, such
data do not reveal how surrounding RNA sequence and structural
context modulate affinity. We determined the affinity of hnRNP A1
for all possible sequence variants (n= 16,384) of the HIV exon splicing
silencer 3 (ESS3) 7-nt apical loop. Analysis of the affinity distribution
identifies the optimal motif 5′-YAG-3′ and shows how its copy num-
ber, position in the loop, and loop structure modulate affinity. For a
subset of ESS3 variants, we show that specificity is determined by
association rate constants and that variants lacking the minimal se-
quence motif bind competitively with consensus RNA. Thus, the re-
sults reveal general rules of specificity of hnRNP A1 and provide a
quantitative framework for understanding how it discriminates be-
tween alternative competing RNA ligands in vivo.

hnRNP A1 | protein–RNA specificity | RNA structure | thermodynamics |
binding kinetics

Gene expression is regulated by an ensemble of protein–RNA
complexes that assemble and disassemble throughout the

lifetime of a transcript (1–5). Knowledge of the determinants of
RNA-binding protein (RBP) specificity is therefore essential to
understanding the relative affinity for sites of association within the
transcriptome. A characteristic feature of many RBPs is their ability
to elicit biological function by binding at sites in RNAs that vary
significantly in sequence and local structure. This broad specificity of
RBPs challenges the simplistic description of RNA binding as either
specific or nonspecific. Global profiling methods provide consensus
sequence motifs that represent preferential binding sites by RBPs in
the transcriptome (6–11). Although powerful, such approaches are
usually nonquantitative. Moreover, they do not readily provide in-
formation on how surrounding sequence identity or positioning of
preferred sequences within higher order structure alters affinity.
Methods such as high-throughput sequencing kinetics (HTS-KIN),
RNA Bind-n-Seq, and RNA MaP have recently been developed
that allow the affinities and reaction kinetics of thousands of RNAs
to be measured simultaneously (6, 12–15). These methods can po-
tentially provide global information on the surrounding context of a
given sequence motif; however, they have yet to see wide applica-
tion for structure/function studies of RNA specificity.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent

a diverse family of RBPs that are implicated at most stages of
posttranscriptional gene regulation (16, 17). The prototypical
member of this family, hnRNP A1, regulates alternative splicing,
nuclear export, translation, and other RNA processing events (17).
HnRNP A1 has a modular domain organization consisting of
tandem RNA recognition motifs (RRMs), collectively referred to
as unwinding protein 1 (UP1), and an intrinsically disordered
RGG-rich C terminus. UP1 is the primary RNA binding domain,
whereas the C terminus mediates homologous and heterogeneous
protein–protein interactions. The individual RRMs of UP1 have a

high degree of sequence homology and adopt nearly identical 3D
structures (18–20). The hnRNPs, including A1, are thought to bind
to pre-mRNAs combinatorially as dictated by their intrinsic spec-
ificity for RNA sequence and structure (11, 21). Thus, a compre-
hensive and quantitative description of hnRNP A1 specificity is
required to understand its function in gene expression.
Early studies demonstrated that hnRNP A1 binds selectively

to single-stranded RNA and the human telomeric sequence
(TTAGGG)n (22). Selection amplification experiment(s) (SELEX)
identified a high-affinity motif 5′-UAGGGA/U-3′ that now serves
as a benchmark for sequence-specific hnRNP A1 binding (23).
Transcriptome-wide studies of functional hnRNP A1 binding
sites using motif finder algorithms further indicate specificity for a
5′-UAG-3′motif (11, 24). In previous work, we determined a small
angle X-ray scattering (SAXS) model of UP1 in complex with the
HIV ESS3 stem loop (SL3ESS3), which was guided by a 1.92-Å
crystal structure of UP1 bound to a 5′-AGU-3′ oligomer (25). The
structure indicates that RRM1 and the inter-RRM linker fold to
form a nucleobase pocket that specifically recognizes 5′-AG-3′,
which is part of the 7-nt SL3ESS3 apical loop (5′-GAUUAGU-3′)
(Fig. 1). Moreover, single- or double-cytosine substitutions within
the apical loop reduce UP1 binding affinity (upward of 20-fold) by
slowing down the rate of complex formation (26).
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To evaluate the distribution of hnRNP A1 among the sea of
alternative binding sites in the transcriptome requires a more
complete understanding of specificity. Here, we comprehensively
evaluate the determinants of specific UP1–SL3ESS3 interactions by
measuring relative equilibrium association constants (KA,rel) for all
variants of a fully randomized 7-nt SL3ESS3 apical loop (n =
16,384). To achieve this goal, we used high-throughput sequencing
analysis of equilibrium binding (HTS-EQ), a newly developed
method that uses Illumina sequencing to quantify the protein or
enzyme binding of thousands of RNAs simultaneously. Quantita-
tive analyses of the resulting affinity distribution from HTS-EQ
further establishes the consensus motif 5′-YAG-3′, but also com-
prehensively reveal how affinity for alternative RNAs is controlled
by its position in the loop, spacing when two motifs are present, and
the presence of unfavorable secondary structure. For a subset of
SL3ESS3 variants studied, we further show that discrimination is
primarily controlled by the association rate constant, and that var-
iants lacking the 5′-YAG-3′ motif nonetheless compete with con-
sensus RNA for binding. Thus, the results comprehensively reveal
the rules of specificity of hnRNP A1, establish a mechanistic basis
for discrimination, and provide a framework for understanding how
it discriminates between alternative competing RNA targets in vivo.

Results
HTS-EQ Reveals the Global Affinity Distribution of UP1-SL3ESS3. To
evaluate the determinants of UP1-SL3ESS3 specificity comprehen-
sively, we randomized the 7-nt SL3ESS3 apical loop and performed
HTS-EQ (27) (Fig. 2A). HTS-EQ involves binding of a random-
ized RNA population to increasing concentrations of UP1 under
equilibrium conditions, followed by separation of the free and
bound RNAs by EMSA (HTS-EQ work flow is shown in Fig. S1).
By analyzing the change in distribution of individual sequence
variants quantified by Illumina sequencing as a function of RBP
concentration allows measurement of the KA,rel values for all
possible sequence variants calibrated to native SL3ESS3 [KA,rel =
KA(NNNNNNN)/KA(GAUUAGU)]. Variants that bind weaker
than the native RNA have KA,rel values <1, whereas variants that
bind stronger have KA,rel values >1.
Fig. 2B shows the resulting affinity distribution [i.e., distribution

of the number of sequences among the range of observed KA,rel
(lnKA,rel) values]. The KA,rel values are best visualized as the
natural log so that the magnitude reflects relative free energies
between sequence variants. The histogram reveals native SL3ESS3

is optimized to bind UP1 because it lies toward the high-affinity
region of the distribution; however, 722 variants bind with lnKA,rel
values greater than the native sequence. Of the 722 variants, 72%

contain at least one 5′-AG-3′motif and 98% of the top 50 variants
each have a 5′-AG-3′. Calculation of an optimal sequence logo
from the top 50 variants (Fig. 2C) shows an overall preference for
U, A, and G, which is consistent with the base composition of the
high-affinity 5′-UAGGGA/U-3′ sequence identified by SELEX
(23); however, the SELEX sequence lies slightly to the low-affinity
side of native SL3ESS3 (lnKA,rel = −0.24) in the distribution, in-
dicating the complexity of hnRNP A1 specificity. Nevertheless,
HTS-EQ clearly reveals that the signature of a specific hnRNP A1
target minimally contains a 5′-AG-3′.
The relative binding affinities for different sequence variants are

nonetheless clearly further tuned by the identity of neighboring se-
quences in the RNA. Such important features of specificity are not
fully accounted for by models derived only from optimal sequence
variants. To identify the local sequence and structure properties that
determine specificity, we fit the entire distribution of KA,rel values to
two analytical models of RNA sequence specificity. First, a position
weight matrix (PWM) model was used that only considers the
identity of a nucleobase at each position in the loop (28). The af-
finity distribution was also fit to a PWM model that includes inter-
action coefficients (IC values) between nucleobases that account for
positive and negative effects of sequence variation between positions
in the binding site (29, 30). The PWM model performs poorly at
recapitulating the determinants of UP1-SL3ESS3 specificity, whereas
inclusion of IC values greatly improves the correspondence between
the model and experimental data (R2 > 0.7) (compare Fig. 2D and
Figs. S2 and S3). Therefore, binding specificity does not solely
involve the selection of optimal AG nucleobases at individual
positions in the loop but also must include additional contribu-
tions from the surrounding sequence context.

Fig. 1. UP1 domain of hnRNP A1 binds specifically to 5′-AG-3′ through its
nucleobase pocket. (A) Domain organization of full-length hnRNP A1.
(B) Secondary structure of the HIV ESS3 (NL4-3 strain) stem loop wherein apical
loop residues involved in UP1 binding are colored red. (C) Surface representa-
tion of UP1 bound to 5′-AGU-3′ (red). UP1 color coding is the same as in A.

Fig. 2. Determination of the affinity distribution for UP1 binding to all
possible variants of the 7-nt SL3ESS3 apical loop. (A) Secondary structure of
SL3ESS3 showing the constant base-paired stem loop and the randomized
7-nt apical loop region (red). (B) Affinity distribution of KA,rel values for UP1
binding to all possible sequence variants in the randomized pool of SL3ESS3

variants. The vertical line corresponds to the value for the reference native
SL3ESS3 (lnKA,rel = 0). Seven hundred twenty-two variants bind with higher
affinities than native SL3ESS3, of which 72% contain at least one 5′-AG-3′
dinucleotide. (C) Probability sequence logo calculated for the 50 highest
affinity SL3ESS3 variants. (D) Comparison of experimental KA,rel values and KA,

rel values predicted using a PWM model that includes interaction coefficients
(IC values) between nucleobases. (E) Comparison of the IC values derived
from fitting the KA,rel affinity distribution to Eq. S7 as described in SI Ma-
terials and Methods. The magnitude of the IC values is indicated by differ-
ences in color: red, positive interactions; blue, negative interactions.
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Recasting the IC values as a heat map offers insights into se-
quence and structure that modulate binding affinity (Fig. 2E). For
example, negative IC values are observed between N1–N7 and
N2–N6 for sequence combinations that can form Watson–Crick
pairs. This result indicates that base-pairing interactions that re-
duce the loop size are highly unfavorable. Also, the subsets of
variants containing stable loop sequences UUCG, GNRA, and
UNCG have distributions that are shifted to lower KA,rel values
(Fig. S4). In contrast, the heat map shows positive couplings for
5′-UA-3′ and 5′-AG-3′ dinucleotides as well as, to a lesser extent,
5′-CA-3′ dinucleotides at adjacent positions in the loop (Fig. 2E).
The affinity distribution of variants containing a 5′-AG-3′ but

lacking an unfavorable secondary structure is clearly shifted to higher
KA,rel values compared with AG variants that contain secondary
structure (Fig. 3A). Approximately 200 of 722 variants with KA,rel
values >1 lack at least one AG in the loop. To identify the positive
determinants at adjacent positions, high-affinity variants were aligned
according to the AG dinucleotide in their sequence regardless of its
position in the loop (Fig. 3B). A sequence probability logo calculated
from this alignment further identifies C/U located 5′ to 5′-AG-3′ and
reveals a G positioned 3′ as an additional positive determinant. A
probability logo of high-affinity variants (KA,rel > 1) lacking 5′-AG-3′
shows a polyG pattern (Fig. 3C). Nonetheless, the optimal specificity
determinant is clearly a 5′-YAG-3′ motif that may occur at multiple
positions in the loop. Comparison of the KA,rel values for this motif at
each possible position in the loop reveals that UAG is optimal at N5–
N7 (Fig. 3 E and F). This observation contrasts with the position of

UAG at N4–N6 in the native HIV ESS3 loop (Fig. 3E). Sequence
variants with two 5′-AG-3′ dinucleotides, on average, bind with
higher affinity than the native sequence; however, an optimal spacing
of at least two nucleotides is required for the additive effect to be
observed (Fig. 3D). Thus, analysis of the KA,rel affinity distribution
reveals an unfavorable loop structure; establishes 5′-YAG-3′ as the
minimal sequence specificity motif; and, most importantly, defines
how local sequence context modulates the contribution of this motif
to affinity.

Analysis of the Thermodynamic and Kinetic Basis for UP1-SL3ESS3

Specificity. To understand the thermodynamic contributions to
UP1 specificity, we randomly selected SL3ESS3 variants from dif-
ferent regions of the affinity distribution and quantitatively analyzed
their binding properties by calorimetric titrations (Fig. 4A and Fig.
S5). The KA,rel values measured by HTS-EQ and calorimetry cor-
relate for the selected SL3ESS3 variants (Fig. 4B and Fig. S5), in-
dicating HTS-EQ provides an accurate depiction of the distribution
of binding affinities. Although the KA,rel correlation between HTS-
EQ and isothermal titration calorimetry (ITC) is good (R2 = 0.85),
a few outliers are observed (Fig. S5). Variations in sample quality
for ITC and inherent noise in the high-throughout sequencing data
that increases with lower affinity substrates are likely major con-
tributors to the ∼15% discrepancy.
Consistent with observations fromHTS-EQ, UP1 binds SL3ESS3

variants that contain at least one 5′-AG-3′ with greater affinity
than non-AG variants, and sequences with two 5′-AG-3′ motifs
bind slightly stronger than sequences with just one, likely reflecting
a higher probability for UP1 to interact productively with these
variants. On average, SL3ESS3 variants with no 5′-AG-3′ bind
approximately sevenfold weaker than native SL3ESS3. This obser-
vation is consistent with our previous results using single-cytosine
substitutions, wherein UP1 binds the loop sequence 5′-GAUU-
CGU-3′ 10-fold weaker than 5′-GAUUAGU-3′ (26). The ther-
modynamic signatures reveal that the reduction in binding affinity
for non-AG variants manifests primarily as a decrease in favorable
association enthalpy (ΔΔH = 8 kcal/mol).
As predicted from the sequence specificity model derived from

fitting the affinity distribution measured by HTS-EQ, some
variants form new Watson–Crick base pairs within the apical
loop that are inhibitory to binding (Fig. 2E). Indeed, 1H NMR of
the imino region of 5′-GGUGACC-3′ and 5′-UGUGGCA-3′
(proposed pairing interactions underlined here and throughout
remaining text) show new imino signals with chemical shifts
consistent with GC and AU base pairs (Fig. S6). The new base
pairs reduce the loop from 7 to 3 nt. Calorimetric titrations of UP1
with 5′-GGUGACC-3′ and 5′-UGUGGCA-3′ show binding af-
finities are weaker relative to native SL3ESS3 as a consequence of a
significant loss of binding enthalpy (∼ΔΔH = 15 kcal/mol).
We next investigated the kinetic contributions to specificity by

performing biolayer interferometry (BLI) studies with selected
SL3ESS3 variants (Fig. 4 D–F, Fig. S7, and Table S1). Kinetic
analysis shows that all six variants dissociate from UP1 with com-
parable apparent first-order off-rate constants (koff, app = 4.5–6.2 ×
10−3 s−1), whereas the apparent second-order on-rate constants for
association (kon, app = 0.3–1.1 × 105 M−1·s−1) show a modest but
larger sequence dependence. SL3ESS3 variants with one 5′-AG-3′
bind with slightly slower kon, app values compared with
5′-GUAGGAG-3′; however, non-AG variants bind, on average, 2.5-
fold slower, and 5′-UGUGGCA-3′ binds approximately fourfold
slower. Decreases in kon, app values were previously determined as
the predominant mechanism that contributes to weaker affinities
for cytosine-substituted SL3ESS3 constructs, and similar observa-
tions have recently been made for other protein–RNA systems
(13, 25, 27). Thus, for some SL3ESS3 variants, specificity is driven,
in large part, by the frequency with which UP1 collides produc-
tively with a cognate RNA that minimally exposes a conforma-
tionally flexible 5′-AG-3′ motif. However, a more detailed kinetic

Fig. 3. Analysis of sequence and structure attributes that modulate binding
affinity of hnRNP A1. (A) Histogram comparison of the KA,rel affinity distri-
butions of sequence variants with a 5′-AG-3′ dinucleotide motif (AG, red) and
the subset of these sequences filtered to remove sequence variants with pre-
dicted base-pairing interactions between N1N2 and N6N7 (no structure; steel
blue). (B) Sequence probability logo for the highest affinity (KA,rel > 1) variants
aligned with respect to the position of the 5′-AG-3′ in their sequence. Because
all of the variants included in the analysis contained an AG at the aligned
positions, their binary probability is 2 by definition. (C) Sequence probability
logo of the highest affinity SL3ESS3 loop variants that lack a 5′-AG-3′ dinucle-
otide in their sequence. (D) Violin plot of the distributions of KA,rel values for
SL3ESS3 loop sequence variants with two 5′-AG-3′ motifs plotted according to
the number of nucleotides between the two AG sequences. (E) Violin plot of
the probability density of KA,rel values for SL3

ESS3 loop sequence variants with
only one 5′-AG-3′motif plotted according to the position of the AG in the loop
(1–2 = A1G2; 2–3 = A2G3, etc.). (F) Sequence probability logo for highest af-
finity SL3ESS3 loop sequence variants with A6G7.
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study of SL3ESS3 variants is needed to understand fully if the dif-
ferences in kon, app values result from possible intermediates in the
binding pathway. Nevertheless, the trend in the equilibrium disso-
ciation constants measured independently by calorimetric titrations
(Fig. 4A) and BLI (Fig. 4F) correlate, indicating that the kinetic
parameters indeed offer some insights into the mechanisms by which
hnRNP A1 discriminates cognate from noncognate RNA targets.

UP1 Uses the Same Binding Surface to Interact with 5′-AG-3′ and Non–
AG-Containing RNAs. We previously showed UP1 interacts with na-
tive SL3ESS3 through its RRM1 domain and inter-RRM linker to
form a 1:1 complex (25). Although capable of binding RNA,
RRM2 is not considered to be the preferred high-affinity binding
surface. To test whether SL3ESS3 variants compete for the same
surface on UP1, we carried out competitive calorimetric titrations
with SL3ESS3 loop sequence variants 5′-GUAGGAG-3′ and
5′-GCACUUU-3′. For simplicity, we refer to these RNAs as
(AG)SL3ESS3 and (AC)SL3ESS3, respectively. Titration of (AC)SL3ESS3

with UP1 shows that it binds with a dissociation constant of
344 nM; however, (AC)SL3ESS3 does not bind to a preformed
UP1–(AG)SL3ESS3 complex under these conditions (Fig. 5A). This
observation is consistent with the ∼18-fold stronger binding affinity
of UP1 for (AG)SL3ESS3 compared with (AC)SL3ESS3 (Fig. 5 A
and B). Conversely, (AG)SL3ESS3 binds with reduced apparent
affinity for UP1 when titrated into a reaction containing preformed
UP1–(AC)SL3ESS3 complexes (Fig. 5B). As expected for compet-
itive binding, the apparent affinity of (AG)SL3ESS3 for UP1 de-
creases as the concentration of (AC)SL3ESS3 increases.
It is possible that lower affinity SL3ESS3 variants bind to UP1 in

a nonspecific manner in which the protein associates weakly with

multiple different sites on the RNA. To test the binding mode
directly, 1H-13C heteronuclear multiple quantum coherence
(HMQC) titrations were performed using a (13C)U selectively
labeled (AC)SL3ESS3 construct. Fig. 5C shows that despite its
lower affinity, UP1 binds (AC)SL3ESS3 in a site-specific manner
because only a subset of the correlation peaks show significant
chemical shift perturbations. In the presence of an equimolar
amount of unlabeled (AG)SL3ESS3, the 1H-13C correlation peaks of
(AC)SL3ESS3 are identical to its unbound form (Fig. 5D). Fig. 5E
shows that adding twofold excess (AG)SL3ESS3 to a preformed
UP1–(AC)SL3ESS3 complex effectively displaces (AC)SL3ESS3.
Collectively, the calorimetric and NMR titrations reveal that
SL3ESS3 variants compete for the same binding surface on UP1 and
that UP1 preferentially associates with (AG)SL3ESS3 over (AC)
SL3ESS3 when both are present at similar concentrations. The ob-
servation that different SL3ESS3 variants compete for the same sur-
face on UP1 is significant because it verifies that the relative binding
affinities determined from HTS-EQ reflect the same binding mode.

The UP1 HTS-EQ Affinity Distribution Allows Prediction of Potential
microRNA Targets. The RNA specificity model derived from the
UP1-SL3ESS3 HTS-EQ affinity distribution reveals sequence and
structure attributes that should extend to other biologically rele-
vant stem loop systems. To test the predicative capabilities, we
applied the UP1-SL3ESS3 trained model to microRNAs (miRNAs)
derived from miRBase. Fig. S8 shows the predicted affinity dis-
tribution for a subset (n = 1,193) of miRNAs that contain hairpin
loops >3 nt long (Materials and Methods). The distribution indi-
cates that hnRNP A1 has a range of affinities for miRNA targets
that reflect both positive and negative contributions of RNA

Fig. 4. Independent biophysical measurements correlate with HTS-EQ and reveal insights into the binding mechanism. (A) Six representative isotherms for UP1
titrated into SL3ESS3 variants from the three regions of the affinity distribution: high, medium, and low. Titrations were performed at 298 K, 140mMK+, and pH 6.5.
Processed isotherms were fit to a 1:1 binding model. Reported dissociation constants correspond to average values of two measurements. (B) Comparison of the
relative binding affinities measured by HTS-EQ and ITC for the selected SL3ESS3 variants. The relative binding affinities for each variant are calibrated to native
SL3ESS3 (GAUUAGU). The plot shows that the two methods provide comparable information regarding the relative binding affinities and that HTS-EQ provides a
true depiction of specificity. Fig. S5 shows the comparison between HTS-EQ and ITC for all 15 SL3ESS3 variants (R2 = 0.85). (C) Comparison of the thermodynamic
signatures of UP1 titrations with SL3ESS3 variants. Thermodynamic values represent average ± SD for two replicates. (D and E) Summary of kinetic binding pa-
rameters for UP1 with select SL3ESS3 variants reveals the predominant driver of specificity is a change in association rates, whereas dissociation rates are mostly
unperturbed. Kinetic values represent average ± SEM for two replicates. (F) Dissociation constants for UP1 with select SL3ESS3 variants as determined from kinetic
binding parameters. Note that the trend in the equilibrium dissociation constants measured by BLI and ITC correlate but are, on average, 1.5-fold different.
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sequence and structure. Indeed, the model recapitulates trends in
relative affinities for 20 of 22 miRNAs for which experimental
binding data to hnRNP A1 were determined using a chemilumi-
nescent microtiter assay (31). Significantly, the model predicts the
relative affinities of mir-18a (119 nM) and let-7a (12 nM), for both
of which biogenesis is regulated by hnRNP A1 (32, 33). Consistent
with attributes derived from the PWM + IC model, the hairpin
loops of mir-18a and let-7a each contain at least one unpaired
5′-UAG-3′ motif. Thus, the RNA specificity model derived from
the UP1-SL3ESS3 HTS-EQ data can be used to predict other bi-
ologically relevant RNA targets of hnRNP A1. Application of the

model to miRNAs hints that hnRNP A1 might be a general ac-
cessory factor for a subset of primary miRNAs.

Discussion
RNA sequence and structure contribute to specific protein
recognition; therefore, identifying these intrinsic properties is nec-
essary to interpret fully how protein–RNA networks control gene
expression. Although they have proven transformative, most tran-
scriptome-wide methods probe RBP specificity without obtaining
information on the underlying structural context; they also do not
provide quantitative information about relative affinities for alter-
native binding sites. Here, we applied HTS-EQ, a newly developed
high-throughput method that allows measurement of the relative
equilibrium constants of an RBP to thousands of RNAs simulta-
neously (27). We used HTS-EQ to evaluate interactions between
the UP1 domain and a randomized pool of HIV SL3ESS3 variants
containing all possible loop sequences. Quantitative sequence
specificity modeling of the resulting distribution of binding affini-
ties allowed the intrinsic determinants of hnRNP A1 recognition to
be identified. HnRNP A1 is generally characterized as nonspecific
owing to its wide range of cellular functions; however, crosslinking
immunoprecipitation (CLIP) and RNAcompete studies identified
similar consensus patterns that center around a composite UAGG
motif (11, 24, 34). Consistent with those results, the highest affinity
SL3ESS3 variant identified from HTS-EQ has a GUAGGAG se-
quence and 76% of the top 50 variants all contain UAG. Despite
this correspondence, we were unable to determine a clear 7-nt con-
sensus pattern from the HTS-EQ distribution because the minimal
5′-AG-3′motif can occupy multiple and energetically similar registers
around the apical loop. Indeed, quantitative modeling of the affinity
distribution revealed favorable couplings between UA and AG di-
nucleotides at adjacent positions throughout the loop, which is con-
sistent with 5′-AG-3′ being the most frequently observed dinucleotide
identified in variants that bind tighter than native SL3ESS3. Thus,
we conclude that the specificity of hnRNP A1 centers on a con-
formationally exposed 5′-AG-3′ dinucleotide but that binding affinities
are modulated by the surrounding sequence and structural context.
The preference for 5′-AG-3′ is understood by analysis of the

UP1-AGU crystal structure, which shows both rA and rG engage
in stereospecific contacts within the nucleobase pocket. Purines
are preferred at both positions within the pocket due to favorable
van der Waals and cation–π stacking interactions. Pyrimidines, due
to their smaller ring size, are unlikely to satisfy these interactions
with equivalent energetics. An adenine in the first position makes
specific hydrogen bond interactions with functional groups con-
tributed from Val90 and Arg88. At the second position, the gua-
nine is primarily selected through hydrogen bonds with Gln12 and
Lys15. Although some of these interactions can be satisfied with
other dinucleotides, the combined effects of size and functional group
specificity are unique to 5′-AG-3′. We previously hypothesized the
hydrogen bond interaction between the N6 amino group of adenine
and the α-carbonyl oxygen of Arg88 triggers a conformational change
in UP1 that transmits across the inter-RRM linker to RRM2. Arg88 is
involved in one of two conserved salt-bridge interactions that stabilize
the relative RRM orientations and the nucleobase pocket. Mutation
of Arg88 resulted in an ∼18-fold reduction in binding affinity for
native SL3ESS3, presumably by causing the nucleobase pocket to
misfold (25). Thus, the ability of rA to induce a conformational
change might increase the apparent thermodynamic contribution of
rA at this position, because no other nucleobase can simultaneously
fulfill the stacking interactions and hydrogen bond with Arg88.
It is confounding that 5′-AG-3′ can determine functional

specificity, given its potential to be highly redundant in genomes.
As revealed in the HTS-EQ distribution, contextual features sur-
rounding 5′-AG-3′ modulate binding affinities of UP1 for SL3ESS3

variants and individual biophysical measurements indicate the
differences in affinities manifest as perturbations in association
rate constants. Therefore, hnRNP A1 achieves specificity, in

Fig. 5. SL3ESS3 variants compete for the same UP1 binding surface. (A) Ca-
lorimetric titrations of (AC)SL3ESS3 with free UP1 and UP1 preloaded with
(AG)SL3ESS3 at a 1.3:1 (RNA/protein) ratio show that (AC)SL3ESS3 is unable to
bind to a preformed UP1–(AG)SL3ESS3 complex. (B) Calorimetric titrations of
(AG)SL3ESS3 into UP1 preloaded with increasing ratios of (AC)SL3ESS3 show
(AG)SL3ESS3 can still bind UP1, although with decreasing apparent affinities.
(C) 1H-13C HMQC titration of UP1 with (13C)U-selectively labeled (AC)SL3ESS3

indicates UP1 binds site specifically to the apical loop. (D) Inclusion of un-
labeled (AG)SL3ESS3 with (13C)U-selectively labeled (AC)SL3ESS3 at equimolar
concentrations reveals UP1 no longer binds (AC)SL3ESS3. (E ) Addition of
twofold excess of (AC)SL3ESS3 into UP1 preloaded with (13C)U-selectively
labeled (AC)SL3ESS3 shows (AG)SL3ESS3 can effectively displace bound (AC)
SL3ESS3. Collectively, these results indicate that SL3ESS3 variants compete
for the same binding surface on UP1 and that UP1 preferentially binds
RNA elements with a 5′-AG-3′ motif. Titrations were performed at 298 K,
140 mM K+, and pH 6.5.
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part, from the frequency with which it collides productively with
RNA targets that contain 5′-AG-3′ sequences embedded within
optimized environments. Although the UP1 domain of hnRNP
A1 retains binding affinity for non–AG-containing RNAs, the
biological significance of those associations will also depend on
physiological conditions within the cell. Transcript abundance,
posttranscriptional modifications, and subcellular localization
will each play a role in determining the extent to which hnRNP
A1 occupies non-AG transcripts. Of note, hnRNP A1 has been
shown to partition to RNA granules under different physiological
conditions, including those physiological conditions associated
with ALS pathogenesis (35). It will be of great interest to de-
termine the sequence and structural composition of transcripts
that contribute to this property.
A key function of hnRNP A1 is to regulate alternative splicing

events, in which it associates with intronic or exonic splicing si-
lencers to occlude components of the splicing apparatus. The re-
sults presented here suggest that hnRNP A1 might more globally
affect splicing outcomes by binding directly to 3′-acceptor sites
that contain consensus 5′-YAG-3′motifs. Along those lines, hnRNP
A1 was shown to proofread binding of U2AF to 3′-acceptor sites
that contain AG but not CG dinucleotides (36). As revealed by
quantitative modeling of the HTS-EQ distribution, CG dinucleo-
tides contribute negatively toward UP1-SL3ESS3 recognition at most
positions around the 7-nt apical loop (Fig. 2E). Thus, the ability of

hnRNP A1 to regulate splicing likely derives from how rapidly it
forms stable complexes with target transcripts that are also being
competed for by other RBPs.
In summary, we applied HTS-EQ to determine the global

affinity distribution of hnRNP A1 by evaluating binding of its
UP1 domain to a randomized pool of HIV SL3ESS3 variants. The
distribution reveals hnRNP A1 retains binding affinity for a wide
range of RNA targets; however, specificity is decisively deter-
mined by the local context of 5′-YAG-3′ motifs. Therefore, the
work presented here represents a quantitative and comprehen-
sive evaluation of hnRNP A1 specificity, and it raises interesting
questions with regard to the combinatorial factors that deter-
mine how hnRNP A1 identifies functional binding sites in vivo.

Materials and Methods
The overall work flow of the HTS-EQmethod is summarized in Fig. S1. Details
regarding sample preparation, data analysis, and data interpretation
for HTS-EQ and the biophysical studies can be found in SI Materials
and Methods.

ACKNOWLEDGMENTS. We thank James Delproposto for assistance with
biolayer interferometry kinetic studies, which were supported by Grant
P50GM103297. The Bruker Avance III HD (500 MHz) was purchased using
funds provided by National Science Foundation Grant 1334048. This work
was supported by National Institute of General Medical Sciences Grants
GM101979 (to B.S.T.) and GM056740 (to M.E.H.).

1. Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mRNA: Past and
present trends in mRNP fashion. Annu Rev Biochem 84:325–354.

2. Iadevaia V, Gerber AP (2015) Combinatorial control of mRNA fates by RNA-binding
proteins and non-coding RNAs. Biomolecules 5(4):2207–2222.

3. Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP (2015) RNA-binding
proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 6:141.

4. Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell
54(4):547–558.

5. Rissland OS (2017) The organization and regulation of mRNA-protein complexes.
Wiley Interdiscip Rev RNA 8(1):1–17.

6. Ascano M, Gerstberger S, Tuschl T (2013) Multi-disciplinary methods to define RNA-
protein interactions and regulatory networks. Curr Opin Genet Dev 23(1):20–28.

7. Jayaseelan S, Doyle F, Tenenbaum SA (2014) Profiling post-transcriptionally networked
mRNA subsets using RIP-Chip and RIP-Seq. Methods 67(1):13–19.

8. Licatalosi DD, et al. (2008) HITS-CLIP yields genome-wide insights into brain alterna-
tive RNA processing. Nature 456(7221):464–469.

9. Cook KB, Hughes TR, Morris QD (2015) High-throughput characterization of protein-
RNA interactions. Brief Funct Genomics 14(1):74–89.

10. Campbell ZT, Wickens M (2015) Probing RNA-protein networks: Biochemistry meets
genomics. Trends Biochem Sci 40(3):157–164.

11. Huelga SC, et al. (2012) Integrative genome-wide analysis reveals cooperative regu-
lation of alternative splicing by hnRNP proteins. Cell Reports 1(2):167–178.

12. Jankowsky E, Harris ME (2015) Specificity and nonspecificity in RNA-protein interac-
tions. Nat Rev Mol Cell Biol 16(9):533–544.

13. Buenrostro JD, et al. (2014) Quantitative analysis of RNA-protein interactions on a
massively parallel array reveals biophysical and evolutionary landscapes. Nat
Biotechnol 32(6):562–568.

14. Lambert N, et al. (2014) RNA Bind-n-Seq: Quantitative assessment of the sequence
and structural binding specificity of RNA binding proteins. Mol Cell 54(5):887–900.

15. Ozer A, et al. (2015) Quantitative assessment of RNA-protein interactions with high-
throughput sequencing-RNA affinity profiling. Nat Protoc 10(8):1212–1233.

16. Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: Insights into their role in
health and disease. Hum Genet 135(8):851–867.

17. Jean-Philippe J, Paz S, Caputi M (2013) hnRNP A1: The Swiss army knife of gene ex-
pression. Int J Mol Sci 14(9):18999–19024.

18. Ding J, et al. (1999) Crystal structure of the two-RRM domain of hnRNP A1 (UP1)
complexed with single-stranded telomeric DNA. Genes Dev 13(9):1102–1115.

19. Xu RM, Jokhan L, Cheng X, Mayeda A, Krainer AR (1997) Crystal structure of human
UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure
5(4):559–570.

20. Shamoo Y, Krueger U, Rice LM, Williams KR, Steitz TA (1997) Crystal structure of the
two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nat Struct Biol
4(3):215–222.

21. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the
messages they carry. Nat Rev Mol Cell Biol 3(3):195–205.

22. Ishikawa F, Matunis MJ, Dreyfuss G, Cech TR (1993) Nuclear proteins that bind the pre-
mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence
d(TTAGGG)n. Mol Cell Biol 13(7):4301–4310.

23. Burd CG, Dreyfuss G (1994) RNA binding specificity of hnRNP A1: Significance of
hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 13(5):1197–1204.

24. Bruun GH, et al. (2016) Global identification of hnRNP A1 binding sites for SSO-based
splicing modulation. BMC Biol 14:54.

25. Morgan CE, et al. (2015) The first crystal structure of the UP1 domain of hnRNP A1
bound to RNA reveals a new look for an old RNA binding protein. J Mol Biol 427(20):
3241–3257.

26. Rollins C, Levengood JD, Rife BD, Salemi M, Tolbert BS (2014) Thermodynamic and
phylogenetic insights into hnRNP A1 recognition of the HIV-1 exon splicing silencer 3
element. Biochemistry 53(13):2172–2184.

27. Lin H-C, Niland CN, Zhao J, Jankowsky E, Harris ME (2016) Analysis of binding land-
scapes: C5 protein contributes to ribonuclease P specificity of pre-tRNA 5′ leaders in
the ground state and transition state for binding. Cell Chem Biol 23(10):1271–1281.

28. Stormo GD (2015) DNA motif databases and their uses. Curr Protoc Bioinformatics 51:
2.15.1–2.15.6.

29. Zhao Y, Ruan S, Pandey M, Stormo GD (2012) Improved models for transcription
factor binding site identification using nonindependent interactions. Genetics 191(3):
781–790.

30. Guenther UP, et al. (2013) Hidden specificity in an apparently nonspecific RNA-
binding protein. Nature 502(7471):385–388.

31. Towbin H, et al. (2013) Systematic screens of proteins binding to synthetic microRNA
precursors. Nucleic Acids Res 41(3):e47.

32. Michlewski G, Cáceres JF (2010) Antagonistic role of hnRNP A1 and KSRP in the
regulation of let-7a biogenesis. Nat Struct Mol Biol 17(8):1011–1018.

33. Michlewski G, Guil S, Cáceres JF (2010) Stimulation of pri-miR-18a processing by
hnRNP A1. Adv Exp Med Biol 700:28–35.

34. Ray D, et al. (2013) A compendium of RNA-binding motifs for decoding gene regu-
lation. Nature 499(7457):172–177.

35. Molliex A, et al. (2015) Phase separation by low complexity domains promotes stress
granule assembly and drives pathological fibrillization. Cell 163(1):123–133.

36. Tavanez JP, Madl T, Kooshapur H, Sattler M, Valcárcel J (2012) hnRNP A1 proofreads
3′ splice site recognition by U2AF. Mol Cell 45(3):314–329.

37. Jain N, Morgan CE, Rife BD, Salemi M, Tolbert BS (2016) Solution structure of the HIV-1
intron splicing silencer and its interactions with the UP1 domain of heterogeneous
nuclear ribonucleoprotein (hnRNP) A1. J Biol Chem 291(5):2331–2344.

38. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome
profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-
protected mRNA fragments. Nat Protoc 7(8):1534–1550.

39. Delaglio F, et al. (1995) NMRPipe: A multidimensional spectral processing system
based on UNIX pipes. J Biomol NMR 6(3):277–293.

40. Johnson BA, Blevins RA (1994) NMR View: A computer program for the visualization
and analysis of NMR data. J Biomol NMR 4(5):603–614.

Jain et al. PNAS | February 28, 2017 | vol. 114 | no. 9 | 2211

BI
O
CH

EM
IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
15

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1616371114/-/DCSupplemental/pnas.201616371SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1616371114/-/DCSupplemental/pnas.201616371SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1616371114/-/DCSupplemental/pnas.201616371SI.pdf?targetid=nameddest=STXT

